新型植物根系生長(zhǎng)監(jiān)測(cè)系統(tǒng)CI-602
日期:2017-04-28 10:01:41

主要功能

●  動(dòng)態(tài)監(jiān)測(cè)根系的生長(zhǎng)動(dòng)態(tài)

  長(zhǎng)期監(jiān)測(cè)根系的詳細(xì)結(jié)構(gòu)(甚至土壤顆粒)

  可以快速獲得不同深度的根系分布或土壤剖面圖像

  定點(diǎn)、連續(xù)觀測(cè)根系在整個(gè)生長(zhǎng)季中的動(dòng)態(tài)變化

  快速的掃描獲得高清的根系圖像

  掃描軟件可以設(shè)置不同圖像格式(BMP、JPG、TIF和PNG)

  對(duì)光源進(jìn)行設(shè)置,滿足不同土壤環(huán)境下的掃描

  ICAP命名方式兼容不同分析軟件

  分析軟可以快速的進(jìn)行分析根系的相關(guān)參數(shù)(根長(zhǎng)、周長(zhǎng)、表面積、體積、根尖數(shù)、直徑等36個(gè)常用參數(shù))

測(cè)量參數(shù)

  根系長(zhǎng)度、直徑、截面積、投影面積、根尖數(shù)等參數(shù)

  獲取定位的不同時(shí)間季節(jié)、不同深度的根系分布或土壤剖面圖像數(shù)據(jù)

應(yīng)用領(lǐng)域

廣泛應(yīng)用在田間農(nóng)作物根系研究、林木根系長(zhǎng)期監(jiān)測(cè),水利工程(例如大壩)護(hù)坡草坪選種培育、古樹(shù)病蟲(chóng)害的監(jiān)測(cè)、草原的植被恢復(fù)與保護(hù)研究。

主要技術(shù)參數(shù)

  工作環(huán)境:0℃~50℃,相對(duì)濕度0~100%RH(沒(méi)有水汽凝結(jié))

  *主機(jī)特點(diǎn):柱型設(shè)計(jì)的360度旋轉(zhuǎn)光電耦合主機(jī),可對(duì)根系和土壤狀態(tài)進(jìn)行不變形的線性數(shù)據(jù)獲取

  可獲得高至1200Dpi高清圖像

  無(wú)損線性掃描

  光學(xué)分辨率可選100、300、600、1200Dpi

  電源:UMPC終端供電和軟件控制

  接口:USB、WiFi或藍(lán)牙

  數(shù)據(jù)存貯:直接存貯到數(shù)據(jù)處理終端

  *一次獲取數(shù)據(jù)尺寸:21.56cm×18.3cm

  主機(jī)獲取速率:≥30秒(依據(jù)選擇不同Dpi)

  *主機(jī)探頭尺寸:35.9cm長(zhǎng)×4.6cm(直徑)

  控制盒尺寸:18 cm × 7.5 cm × 5 cm

  *主機(jī):750g

根管

  內(nèi)徑:5.0cm

  外徑:5.7cm

  壁厚:3.2mm

  長(zhǎng)度:1m或2m

選購(gòu)指南

主機(jī)、專業(yè)根系軟件、校準(zhǔn)管、探桿、連接電纜、使用說(shuō)明書、便攜式儀器箱 

68639bc808e4b.jpg

配置選項(xiàng)一

根系分析軟件系統(tǒng) 

CI-690ROOTSNAP根系分析軟件系統(tǒng)

CI-690 RootSnap專業(yè)根系分析軟件安裝在觸摸屏的圖像數(shù)據(jù)處理終端上,可以非常方便的使用手指在根圖上劃過(guò)選擇根系(新型方式)或使用鼠標(biāo)點(diǎn)擊選擇根(傳統(tǒng)方式),RootSnap將自動(dòng)擬合根生長(zhǎng)的軌跡,包括調(diào)整根系軌跡弧度,根系角度研究,手指控制放大縮小圖像等。自動(dòng)測(cè)量根的長(zhǎng)度、直徑、表面積、體積等參數(shù),還可以一鍵估算圖像中的總生物量。

功能

  多點(diǎn)控制界面,優(yōu)化觸屏功能

  根長(zhǎng)、面積、體積、直徑和分枝角的測(cè)量

  平均根參數(shù)

  在6秒內(nèi)快速獲得根的軌跡

  改善圖像品質(zhì)

  自動(dòng)“Snap to Root”功能

  綜合分析關(guān)鍵包

  時(shí)間序列根圖分析

  友好的用戶界面

配置選項(xiàng)二

WinRHIZO Tron MF根系分析軟件

利用WinRHIZO Tron MF可以對(duì)CI-600獲取的根系圖像進(jìn)行分析,可得到根系根長(zhǎng)、表面積、投影面積、體積、平均根直徑和根尖數(shù)目等參數(shù),監(jiān)測(cè)根系時(shí)空生長(zhǎng)變化。

12.png

產(chǎn)地:美國(guó)CID

參考文獻(xiàn)

原始數(shù)據(jù)來(lái)源:Google Scholar

1. L. N. B?ske et al., Applying minirhizotrons to observe spatiotemporal variations in rooting depth and distribution in agroecosystems to improve the performance of hydrological models. Vadose Zone Journal 24, e20382 (2025).

2. H. Zhou et al., Silicon drip fertigation improved sugar beet root and canopy growth and alleviated water deficit stress in arid areas. European Journal of Agronomy 159, 127236 (2024).

3. T. Zhang et al., Analysis of Leaf and Soil Nutrients, Microorganisms and Metabolome in the Growth Period of Idesia polycarpa Maxim. Microorganisms 12, 746 (2024).

4. J. Yuan, M. Peng, G. Tang, Y. Wang, Fine root production, mortality, and turnover in response to simulated nitrogen deposition in the subtropical Abies georgei (Orr) forest. Science of The Total Environment 923, 171404 (2024).

5. S. Uddin et al., Water use dynamics of dryland wheat grown under elevated CO2 with supplemental nitrogen. Crop and Pasture Science 75, - (2024).

6. Y. Tian et al., Improving cotton productivity and nitrogen use efficiency through late nitrogen fertilization: Evidence from a three-year field experiment in the Xinjiang. Field Crops Research 313, 109433 (2024).

7. C. Tardivo, L. Archer, L. Nunes, F. Alferez, U. Albrecht, Root System Reductions of Grafted ‘Valencia’ Orange Trees Are More Extensive Than Aboveground Reductions after Natural Infection with Candidatus Liberibacter Asiaticus. HortScience 59, 595-604 (2024).

8. Y. Song et al., Regulatory effects of non-growing season precipitation on the community structure, biomass allocation, and water-carbon utilization in a temperate desert steppe. Journal of Hydrology 634, 131112 (2024).

9. I. Rog et al., Increased belowground tree carbon allocation in a mature mixed forest in a dry versus a wet year. Global Change Biology 30, e17172 (2024).

10. M. Piecha et al., Plant roots but not hydrology control microbiome composition and methane flux in temperate fen mesocosms. Science of The Total Environment 940, 173480 (2024).

11. L. Jia et al., Contrasting depth-related fine root plastic responses to soil warming in a subtropical Chinese fir plantation. Journal of Ecology n/a,  (2024).

12. W. Huh et al. (Research Square, 2024).

13. S. Huai et al., Short-Term Effects of Incorporation Depth of Straw Combined with Manure During the Fallow Season on Maize Production, Water Efficiency, and Nutrient Utilization in Rainfed Regions. Agronomy 14, 2504 (2024).

14. C. Guo et al., Adaptive strategies in architecture and allocation for the asymmetric growth of camphor tree (Cinnamomum camphora L.). Scientific Reports 14, 22604 (2024).

15. R. S. de Oliveira et al., Survey and genomic characterization of Serratia marcescens on endophytism, biofilm, and phosphorus solubilization in rice plants. Environmental Science and Pollution Research 31, 65834-65848 (2024).

16. N. B. Costa et al., Beneficial bacteria mitigate combined water and phosphorus deficit effects on upland rice. Plant and Soil,  (2024).

17. W. Bieluczyk et al., Fine root production and decomposition of integrated plants under intensified farming systems in Brazil. Rhizosphere 31, 100930 (2024).

18. T. Banet, A. G. Smith, R. McGrail, D. H. McNear Jr., H. Poffenbarger, Toward improved image-based root phenotyping: Handling temporal and cross-site domain shifts in crop root segmentation models. The Plant Phenome Journal 7, e20094 (2024).

19. G. Azam, K. Wickramarachchi, C. Scanlan, Y. Chen, Deep and continuous root development in ameliorated soil improves water and nutrient uptakes and wheat yield in water-limited conditions. Plant and Soil,  (2024).

20. A. A. Atta, K. T. Morgan, S. A. Hamido, D. M. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil. Irrigation Science,  (2024).

21. A. Atta, K. Morgan, S. Hamido, D. Kadyampakeni, Irrigation optimization enhances water management and tree performance in commercial citrus groves on sandy soil.  (2024).

22. J. Arnhold et al., Minirhizotron measurements can supplement deep soil coring to evaluate root growth of winter wheat when certain pitfalls are avoided. Plant Methods 20, 183 (2024).

收 藏