四通道動態(tài)LED陣列近紅外光譜儀 DUAL-KLAS-NIR
日期:2025-03-12 00:00:00

四通道動態(tài)LED陣列近紅外光譜儀

DUAL-KLAS-NIR

同步測量PSII活性(葉綠素?zé)晒猓?/span>PSI活性(P700

PC(質(zhì)體藍(lán)素)Fd(鐵氧還蛋白)的氧化還原變化


image.png


相較于經(jīng)典的雙通道葉綠素?zé)晒鈨xDUAL-PAM-100測量系統(tǒng),新一代四通道動態(tài)LED陣列近紅外光譜儀DUAL-KLAS-NIR,在光合作用電子傳遞鏈組分質(zhì)體藍(lán)素(PC)、光系統(tǒng)I反應(yīng)中心(P700)及鐵氧還蛋白(Fd)的氧化還原測量方面實(shí)現(xiàn)了重大技術(shù)突破。它創(chuàng)新性的采用了四波長對近紅外探測技術(shù),成功解決了圍繞光系統(tǒng)I供體側(cè)和受體側(cè)電子傳遞精準(zhǔn)解析的難題,為光合作用研究開辟了一條嶄新的道路。

作為PSI的電子供體和電子受體,PC(質(zhì)體藍(lán)素)和Fd(鐵氧還蛋白)對PSI的氧化還原起著至關(guān)重要的調(diào)控作用。但一直缺乏科學(xué)便捷的手段對其運(yùn)轉(zhuǎn)狀態(tài)進(jìn)行檢測。DUAL-KLAS-NIR采用先進(jìn)的去卷積技術(shù)(一種根據(jù)來源不同對信號進(jìn)行分離的技術(shù)),能夠同時測量4組不同波長對(780-820nm,820-870nm,840-965nm,870-965nm)的信號,實(shí)現(xiàn)對P700(PSI反應(yīng)中心)、PC和Fd的氧化還原狀態(tài)的同步分析。另外,它還可以測量由540nm和460nm光化光激發(fā)的葉綠素?zé)晒?。還有, DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀也可以擴(kuò)展P515/535模塊,測量跨類囊體膜的質(zhì)子梯度ΔpH和跨膜電位ΔΨ,分析與電子傳遞耦合的跨類囊體膜質(zhì)子轉(zhuǎn)移,質(zhì)子動力勢pmf形成??梢詳U(kuò)展NADPH/9-AA模塊,測量NADP+的還原程度。最后,DUAL-KLAS-NIR也可以通過聯(lián)用葉室3010-DUAL與GFS-3000光合儀聯(lián)用,同步測量光反應(yīng)電子傳遞和暗反應(yīng)CO2同化,系統(tǒng)全面的研究光合作用機(jī)理。

從2016年2月Photosynthesis Research雜志發(fā)表Schreiber博士團(tuán)隊(duì)標(biāo)題為“Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer”的研究論文,隆重介紹了最新設(shè)計(jì)的DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀。時至今日,四通道動態(tài)LED陣列近紅外光譜儀DUAL-KLAS-NIR已累計(jì)發(fā)表論文超過80篇。其中不乏Nature Plants,Nature Communications,The Plant Cell,New Phytologist,Plant Physiology,The Plant Journal等植物學(xué)領(lǐng)域的專業(yè)高分雜志文章(詳見附錄)。



突出特點(diǎn):

1. 可測量活體植物葉片或葉綠體/類囊體/藻類懸浮液,對P700、PC和Fd分別進(jìn)行連續(xù)實(shí)時的分析。

2. 藍(lán)光460nm和綠光540nm雙波長調(diào)制葉綠素?zé)晒鉁y量,可分別測量葉片表層和深層細(xì)胞的光能轉(zhuǎn)換。

3. 通過板載芯片LED技術(shù)設(shè)計(jì)了高度緊湊的固態(tài)照明系統(tǒng),可提供635nm,460nm的光化光和740nm的遠(yuǎn)紅光,以及635nm單周轉(zhuǎn)和多周轉(zhuǎn)飽和閃光。

4. 光學(xué)部件的幾何結(jié)構(gòu)完美兼容3010-DUAL聯(lián)用葉室,可與GFS-3000光合儀組合,在可控條件(光照,溫度,濕度,CO2濃度)下同步測量氣體交換相關(guān)的CO2同化和電子傳遞相關(guān)的氧化還原。

5. 測量光頻率范圍廣(1- 400 kHz),允許連續(xù)評估Fo,也可以在高時間分辨率下記錄葉綠素?zé)晒饪焖賱討B(tài)瞬變(如多相熒光上升動力學(xué)或脈沖弛豫動力學(xué))。

6. 專業(yè)數(shù)據(jù)記錄軟件,入門特別簡單。


主要功能:

1. 測量暗適應(yīng)樣品的PC,P700和Fd最大氧化/還原量,根據(jù)光譜特征可計(jì)算PC/P700和Fd/P700的比值,評估PSI及其與供體側(cè)和受體側(cè)的氧化還原平衡,用于PSI復(fù)合體組裝中間體功能的研究。

2. 測量并記錄光適應(yīng)條件下光合電子傳遞過程中質(zhì)體藍(lán)素(PC),PS I反應(yīng)中心(P700)和鐵氧還蛋白(Fd)的氧化還原比例,評估PSI及其與供體側(cè)和受體側(cè)的相互關(guān)系和協(xié)調(diào)性。

3. 可以通過藍(lán)色和/或綠色PAM熒光測量葉片表層和深層細(xì)胞的光能轉(zhuǎn)換,非常適合與整個葉子的NIR吸收測量進(jìn)行對比分析。

4. 完整的慢速誘導(dǎo)動力學(xué)曲線和快速誘導(dǎo)動力學(xué)曲線測量功能,慢速誘導(dǎo)動力學(xué)可進(jìn)行飽和脈沖分析、淬滅分析,誘導(dǎo)曲線,光合控制,快速光曲線和暗弛豫曲線測量;快速誘導(dǎo)動力學(xué)可進(jìn)行Qa_Decay,Poly300ms等十幾種程序測量。

5. 可使用軟件的自動測量程序?qū)嶒?yàn),也可以編輯腳本(Script)或者保存手動測量程序(Trigger),輕松執(zhí)行復(fù)雜的測量協(xié)議??勺远x測量動作用于特殊誘導(dǎo)過程動力學(xué)曲線數(shù)據(jù)獲取和分析,如狀態(tài)轉(zhuǎn)換和波動光曲線等。

6. 擴(kuò)展P515/535模塊,可測量跨類囊體膜的質(zhì)子梯度ΔpH和跨膜電位ΔΨ,分析與電子傳遞耦合的跨類囊體膜質(zhì)子轉(zhuǎn)移,質(zhì)子動力勢pmf形成。

7. 擴(kuò)展NADPH/9-AA模塊,可測量NADP+的還原程度。

image.png

 DUAL-KLAS-NIR測量模式選擇 

image.png

DUAL-KLAS-NIR軟件近紅外測量光設(shè)置


軟件界面:

image.png

同步測量P700, PC, Fd最大氧化還原量

image.png

同步測量Fluo, P700, PC, Fd慢速誘導(dǎo)動力學(xué)曲線

image.png

同步測量Fluo, P700, PC, Fd光響應(yīng)曲線

image.png

同步測量Fluo, P700, PC, Fd誘導(dǎo)曲線+暗弛豫


擴(kuò)展模塊:


image.png

image.png

image.png

P515/535

NADPH/9AA

3010-DUAL

1、擴(kuò)展P515/535模塊,可測量跨類囊體膜的質(zhì)子梯度ΔpH和跨膜電位ΔΨ,分析與電子傳遞耦合的跨類囊體膜質(zhì)子轉(zhuǎn)移,質(zhì)子動力勢pmf形成。

2、擴(kuò)展NADPH/9-AA模塊,可測量NADP+的還原程度。

3、擴(kuò)展3010-DUAL聯(lián)用葉室,可與GFS-3000光合儀組合,在可控條件(光照,溫度,濕度,CO2濃度)下同步測量氣體交換相關(guān)的CO2同化和電子傳遞相關(guān)的氧化還原。


應(yīng)用領(lǐng)域:

1. 光合電子傳遞鏈復(fù)合體的氧化還原狀態(tài)深入剖析,類囊體膜蛋白組分功能研究,如光系統(tǒng)I的裝。

2. 光合合成生物學(xué)研究相關(guān)的植物學(xué),植物生理學(xué),分子生物學(xué),農(nóng)學(xué),林學(xué)、園藝的領(lǐng)域。

3. 人工光合作用和能源相關(guān)領(lǐng)域,如生物光伏等


應(yīng)用案例:

案例1. 德國Christian-Albrechts大學(xué)的科學(xué)家Jens Appel使用四通道動態(tài)LED陣列近紅外光譜儀Dual-KLAS-NIR,測量藍(lán)藻Synechocystis sp.PCC 6803圍繞PSI的質(zhì)體藍(lán)素、P700和FeS簇(包括鐵氧還蛋白)的氧化還原狀態(tài),首次以絕對值量化了光合生物中通過光系統(tǒng)I的電子流。該研究確定了線性和環(huán)式電子傳遞的比例:環(huán)式電子傳遞占通過PSI的電子流的35%。

image.png

Marius L. , et al.2020, BBA – Bioenergetics

https://doi.org/10.1016/j.bbabio.2020.148353


案例2. 德國WALZ的應(yīng)用科學(xué)家Gert Schansker博士使用四通道動態(tài)LED陣列近紅外光譜儀DUAL-KLAS-NIR測量33種植物的光曲線,探測和表征光合控制的光強(qiáng)度依賴性。研究發(fā)現(xiàn), PC在光強(qiáng)≤400 μmolm-2s-1時完全氧化(陰生植物的葉片的光照強(qiáng)度低于陽生植物葉片)。qP和還原態(tài)P700之間的關(guān)系可以用于衡量光合控制的程度。除了測量光曲線,也可以使用單個中等光強(qiáng)度來表征葉片之間的相對狀態(tài)。進(jìn)一步的發(fā)現(xiàn),在一些適應(yīng)陰生環(huán)境的葉片中,F(xiàn)d在高光強(qiáng)度下變得更加氧化表明從PQ庫到P700的電子傳遞無法跟上PS I受體側(cè)的電子流出。與光合控制的誘導(dǎo)相比,NPQ誘導(dǎo)需要較低的光強(qiáng)度(類囊體腔酸化程度低)。測量結(jié)果還可以用于比較qP和qL,比較的結(jié)果是qP是與光合控制更相關(guān)的葉綠素?zé)晒鈪?shù)。

image.png

Gert Schansker, 2022, Photosynthesis Research

https://doi.org/10.1007/s11120-022-00934-7


案例3. 芬蘭圖爾庫大學(xué)的Tapio Lempi?inen等人通過對正常溫度下培養(yǎng)的擬南芥設(shè)置5種不同的光處理:(1).不處理,(2).60% PSI光抑制,(3).85% PSI光抑制, (4) .60% PSI光抑制后在生長條件下“恢復(fù)”24小時,(5).85% PSI 光抑制后在生長條件下“恢復(fù)”24 小時。然后對不同處理樣品的主要光合復(fù)合物、光合光反應(yīng)的功能和調(diào)節(jié)、ATP 合酶和碳同化進(jìn)行分析。研究功能性PSII和PSI之間的不平衡是否會誘導(dǎo)光合作用適應(yīng)PSI受限的條件。探索植物短期和長期的馴化機(jī)制。研究發(fā)現(xiàn),抑制后直接測量可探測短期適應(yīng)機(jī)制,包括將激發(fā)能量重定向到PSI 的類囊體蛋白磷酸化,光合作用反饋調(diào)節(jié)的變化,比如放松光合作用控制(Photosynthetic Control)和激發(fā)能淬滅。處理后恢復(fù)24小時測量可以有效探測光合機(jī)構(gòu)的長期適應(yīng)機(jī)制,比如基質(zhì)氧化還原系統(tǒng)的重建以及ATP合酶和細(xì)胞色素b6f豐度的增加。植物在適應(yīng)了PSI限制條件后無需進(jìn)行大量PSI修復(fù)即可恢復(fù)CO2同化能力。對 PSI 抑制的反應(yīng)表明植物有效地適應(yīng)了光合機(jī)構(gòu)中發(fā)生的變化,這可能是植物適應(yīng)不利環(huán)境條件的關(guān)鍵組成部分。

image.png

Lempi?inen, T., et al. 2022.

https://doi.org/10.1111/pce.14400


案例4. 德國亥姆霍茲環(huán)境研究中心Lai Bin團(tuán)隊(duì)通過四通道動態(tài)LED陣列近紅外光譜儀Dual-KLAS-NIR系統(tǒng)地研究了在BPV系統(tǒng)中培養(yǎng)的藍(lán)藻集胞藻的光合電子流,揭示了電子傳遞鏈中各組分的氧化還原狀態(tài),并描繪了相應(yīng)的電子流向各種匯。該研究表明,EET與PSI下游的類Mehler反應(yīng)競爭電子。在高濃度下,亞鐵氰化物對電子傳遞鏈的影響與微量氰化物相似,突出了精心設(shè)計(jì)BPV實(shí)驗(yàn)的必要性。此外,該團(tuán)隊(duì)另外一項(xiàng)研究還通過Dual-KLAS-NIR測量PSI、質(zhì)體藍(lán)素和鐵氧還蛋白的氧化還原變化。闡明了生物光伏藍(lán)藻集胞藻動態(tài)切換電子源,并根據(jù)生理和環(huán)境條件,利用不同的細(xì)胞外轉(zhuǎn)移途徑將電流輸出到外部電子匯的機(jī)理。

image.png

Jianqi Yuan., et al. 2024, https://doi.org/10.1016/j.ese.2024.100519.

Schneider, H., et al. 2025, https://doi.org/10.1111/tpj.17225


案例5. 英國謝菲爾德大學(xué)Matthew P Johnson課題組利用基于CRISPR/Cas9的基因編輯技術(shù),在萊茵衣藻中構(gòu)建了通過PSAF將FNR錨定于PSI的嵌合型突變體。使用DUAL-PAM-100雙通道葉綠素?zé)晒鈨xP515/535模塊檢測電致變色位移(ECS),使用 DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀以類似方法測量P700氧化。研究發(fā)現(xiàn),相較于野生型,嵌合突變體因NADPH還原速率降低導(dǎo)致光合生長受限、線性電子傳遞受阻,且PSI受體側(cè)限制增強(qiáng)。但該突變體同時表現(xiàn)出增強(qiáng)的跨膜質(zhì)子梯度(ΔpH)和非光化學(xué)淬滅(NPQ),表明CET活性顯著提升。因此,將FNR錨定于PSI并未促進(jìn)光合線性電子傳遞,反而通過犧牲線性電子傳遞與CO?固定效率優(yōu)先支持環(huán)式電子傳遞。這一發(fā)現(xiàn)揭示了FNR定位對光合電子流向分配的關(guān)鍵調(diào)控作用。

image.png

Emrich-Mills, T. Z., et al. 2025.

https://doi.org/10.1093/plcell/koaf042



產(chǎn)地:德國WALZ


代表文獻(xiàn):

數(shù)據(jù)來源:光合作用文獻(xiàn)Endnote數(shù)據(jù)庫

原始數(shù)據(jù)來源:Google Scholar

 2025

1、Antal, T. K., et al. (2025). "Analysis of chlorophyll fluorescence induction curves (OJIP transients) of phytoplankton under conditions of high photosynthetic activity." Journal of Applied Phycology.

https://doi.org/10.1007/s10811-024-03429-1

2、Emrich-Mills, T. Z., et al. (2025). "Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer." The Plant Cell.

https://doi.org/10.1093/plcell/koaf042

3、Pshybytko, N. L. (2025). "Assessment of the Electrochemical Potential of Thylakoid Membranes in Hordeum vulgare L. Sprouts of Different Ages Under Heat Stress Using Differential Absorption Spectroscopy." Journal of Applied Spectroscopy.

https://doi.org/10.1007/s10812-025-01852-x

4、Schneider, H., et al. (2025). "Understanding the electron pathway fluidity of Synechocystis in biophotovoltaics." The Plant Journal 121(2): e17225.

https://doi.org/10.1111/tpj.17225

2024

5、Doello, S., et al. (2024). "Metabolite-level regulation of enzymatic activity controls awakening of cyanobacteria from metabolic dormancy." Current Biology.

https://doi.org/10.1016/j.cub.2024.11.011

6、Emrich-Mills, T. Z., et al. (2024). "Tethering ferredoxin-NADP+ reductase to photosystem I promotes photosynthetic cyclic electron transfer." bioRxiv: 2024.2011.2001.621516.Hani, U. (2024). Regulation of cyclic and pseudocyclic electron transport, Université Paris-Saclay.

https://doi.org/10.1101/2024.11.01.621516

7、Jones, L. M. (2024). Stress Response in Populus balsamifera Under Projected Weather Extremes.[學(xué)位論文]

8、Nikkanen, L., et al. (2024). "PGR5 is needed for redox-dependent regulation of ATP synthase both in chloroplasts and in cyanobacteria." bioRxiv: 2024.2011.2003.621747.

https://doi.org/10.1101/2024.11.03.621747

9、Niu, Y. (2024). Probing Dynamic Regulation of Photosynthesis Using Harmonically Oscillating Light.Volgusheva, A. A., et al. (2024). "Effect of the insecticide clothianidin on the photosynthetic electron transport chain in pea." Photochemistry and Photobiology n/a(n/a).[學(xué)位論文]

10、Hani, U. and A. Krieger-Liszkay (2024). "Manganese deficiency alters photosynthetic electron transport in Marchantia polymorpha." Plant Physiology and Biochemistry: 109042.

https://doi.org/10.1016/j.plaphy.2024.109042

11、Hubá?ek, M., et al. (2024). "Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis." The Plant Journal n/a(n/a).

https://doi.org/10.1111/tpj.16935

12、Mattila, H., et al. (2024). "Flavonols do not affect aphid load in green or senescing birch leaves but coincide with a decrease in Photosystem II functionality." Biology Open.

https://doi.org/10.1242/bio.060325

13、Ortega-Martínez, P., et al. (2024). "Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803." New Phytologist n/a(n/a).

https://doi.org/10.1111/nph.19793

14、Degen, G. E. and M. P. Johnson (2024). "Photosynthetic control at the cytochrome b6f complex." The Plant Cell.

https://doi.org/10.1093/plcell/koae133

15、Pshybytko, N. L. (2024). "Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress." Journal of Applied Spectroscopy.

https://doi.org/10.1007/s10812-024-01726-8

16、Nies, T., et al. (2024). "A mathematical model of photoinhibition: exploring the impact of quenching processes." in silico Plants 6(1).

https://doi.org/10.1093/insilicoplants/diae001

17、Maekawa, S., et al. (2024). "Enhanced Reduction of Ferredoxin in PGR5-deficient mutant of Arabidopsis thaliana Stimulated Ferredoxin-dependent Cyclic Electron Flow around Photosystem I." Preprints.

https://doi: 10.20944/preprints202401.1303.v1

18、Niu, Y., et al. (2024). "Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light." Plant, Cell & Environment n/a(n/a).

https://doi.org/10.1111/pce.14879

19、Volgusheva, A. A., et al. (2024). "Effect of the insecticide clothianidin on the photosynthetic electron transport chain in pea." Photochemistry and Photobiology n/a(n/a).

https://doi.org/10.1111/php.14018

20、Yuan, J., et al. (2024). "Molecular dynamics of photosynthetic electron flow in a biophotovoltaic system." Environmental Science and Ecotechnology: 100519.

https://doi.org/10.1016/j.ese.2024.100519

2023

21、Degen, G. E., et al. (2023). "PGR5 is required to avoid photosynthetic oscillations during light transitions." Journal of Experimental Botany.

https://doi.org/10.1093/jxb/erad428

22、Ohnishi, M., et al. (2023). "Evaluating the Oxidation Rate of Reduced Ferredoxin in Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow: Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I." International journal of molecular sciences 24(15): 12145.

https://doi.org/10.3390/ijms241512145

23、Niu, Y., et al. (2023). "Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport." New Phytologist n/a(n/a).

https://doi.org/10.1111/nph.19083

24、Flannery, S. E., et al. (2023). "STN7 is not essential for developmental acclimation of Arabidopsis to light intensity." The Plant Journal n/a(n/a).

https://doi.org/10.1111/tpj.16204

25、Gunell, S., et al. (2023). "Enhanced function of non-photoinhibited photosystem II complexes upon PSII photoinhibition." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148978.

https://doi.org/10.1016/j.bbabio.2023.148978

26、Ishii, A., et al. (2023). "The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers." eLife 12: e84488.

https://doi.org/10.7554/eLife.84488

27、Molinari, P. E., et al. (2023). "Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates." Photochemical & Photobiological Sciences.

https://doi.org/10.1007/s43630-023-00425-1

28、Degen, G. E., et al. (2023). "High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control." Plant Physiology.

https://doi.org/10.1093/plphys/kiad084

29、Furutani, R., et al. (2023). "Higher Reduced State of Fe/S-Signals, with the Suppressed Oxidation of P700, Causes PSI Inactivation in Arabidopsis thaliana." Antioxidants 12(1): 21.

https://doi.org/10.3390/antiox12010021

2022

30、Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments." New Phytol n/a(n/a).

https://doi.org/10.1111/nph.18506

31、Lazár, D., et al. (2022). "Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light." Journal of Experimental Botany 73(18): 6380–6393.

https://doi.org/10.1093/jxb/erac283

32、Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson cycle and carbohydrate metabolism in cyanobacteria."  13.

https://doi.org/10.3389/fpls.2022.1028794

33、Khruschev, S. S., et al. (2022). "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications." Biophysical Reviews.

https://doi.org/10.1007/s12551-022-00982-2

34、Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.

https://doi.org/10.1093/plphys/kiac362

35、Appel, J., et al. (2022). "Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.

https://doi.org/10.3390/microorganisms10081617

36、Lempi?inen, T., et al. (2022). "Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery." Plant Cell Environ.

https://doi.org/10.1111/pce.14400

37、Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.

https://doi.org/10.1007/s11120-022-00934-7 

38、Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions." Front Microbiol 13: 896190.

https://doi.org/10.3389/fmicb.2022.896190

39、Rodriguez-Heredia, M., et al. (2022). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.

https://doi.org/10.1093/plphys/kiab550

40、Wang, Y., et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria." eLife 11.

https://doi.org/10.7554/eLife.71339 

41、Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on the frequency characteristics of non-photochemical quenching and cyclic electron transport." bioRxiv: 2022.2002.2009.479783.

https://doi.org/10.1101/2022.02.09.479783 

42、Schmidtpott, S. M., et al. (2022). "Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana." International Journal of Environmental Research and Public Health 19(9): 5144.

https://doi.org/10.3390/ijerph19095144 

43、Degen, G. E., et al. (2022). "Supercharged PGR5-dependent cyclic electron transfer compensates for mis-regulated chloroplast ATP synthase." bioRxiv: 2022.2009.2025.509416.

https://doi.org/10.1101/2022.09.25.509416

 

44、Ishii, A., et al. (2022). "The photosystem I supercomplex from a primordial green alga Ostreococcus tauri harbors three light-harvesting complex trimers." 2022.2011.2008.515661.

https://doi.org/10.1101/2022.11.08.515661

45、Mattila, H., et al. (2022). "Evaluation of visible-light wavelengths that reduce or oxidize the plastoquinone pool in green algae with the activated F0 rise method." Photosynthetica.

https://doi.10.32615/ps.2022.049

2021

46、Furutani, R., et al. (2021). "The difficulty of estimating the electron transport rate at photosystem I." Journal of Plant Research.

https://doi.org/10.1007/s10265-021-01357-6 

47、Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."

https://www.utupub.fi/handle/10024/152715 

48、Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species." Plants 10(7): 1401.

https://www.mdpi.com/2223-7747/10/7/1401  

49、Castell, C., et al. (2021). "New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.

https://doi.org/10.1093/pcp/pcab044

50、Hepworth, C., et al. (2021). "Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I." Nature Plants.

https://doi.org/10.1038/s41477-020-00828-3

51、Mattila, H., et al. (2021). "Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves." Trees.

https://doi.org/10.1007/s00468-021-02114-x

52、Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives CO2 Assimilation in Maize Leaves." International journal of molecular sciences 22.

https://doi.org/10.3390/ijms22094894

53、Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7): 996.

https://doi.org/10.3390/antiox10070996

54、Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5 in the absence of PGRL1." Nature communications 12(1): 3941.

https://doi.org/10.1038/s41467-021-24107-7

2020

55、Shimakawa, G., et al. (2020). "Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer." Photosynthesis Research 144(1): 63-72.

https://doi.org/10.1007/s11120-020-00733-y

56、Flannery, S. E., et al. (2020). "Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis." The Plant Journal 105(1): 223-244.

https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.15053 

57、Furutani, R., et al. (2020). "Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I." Plants 9(12): 1761.

https://doi.org/10.3390/plants9121761

58、Kato, H., et al. (2020). "Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae." Plant Physiology: pp.00726.02020.

https://doi.org/10.1104/pp.20.00726

59、Nikkanen, L., et al. (2020). "Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant Journal n/a(n/a).

https://doi.org/10.1111/tpj.14812

60、Sétif, P., et al. (2020). "Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861(10): 148256.

https://doi.org/10.1016/j.bbabio.2020.148256

61、Theune, M. L., et al. (2020). "In-vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148353.

https://doi.org/10.1016/j.bbabio.2020.148353

62、Ifuku, K., et al. (2020). "Editorial: O2 and ROS Metabolisms in Photosynthetic Organisms." Frontiers in Plant Science 11: 618550.

https://doi: 10.3389/fpls.2020.618550

63、Mattila, H. (2020). "On singlet oxygen, photoinhibition, plastoquinone, and their interconnections." 研究報(bào)告.

https://www.utupub.fi/bitstream/handle/10024/150753/AnnalesAI634Mattila.pdf?sequence=1

64、Mattila, H., et al. (2020). "Action spectrum of the redox state of the plastoquinone pool defines its function in plant acclimation." The Plant Journal 104(4): 1088-1104.

https://doi.org/10.1111/tpj.14983

2019

65、Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C: Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants 8: 152.

https://doi.org/10.3390/plants8060152

66、Sétif P, Boussac A, Krieger-Liszkay A: Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynthesis Research 142: 307-319.

https://doi.org/10.1007/s11120-019-00665-2

67、Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research, in press.

https://doi.org/10.1007/s11120-019-00691-0

68、Miyake, C. (2019). "P700 oxidation suppresses the production of reactive oxygen species (ROS) in photosystem I and induces ferredoxin-independent cyclic electron flow within PS I." Photosynthesis Hydrogen Energy Research for Sustainability: 24.

International Conference Photosynthesis Research for Sustainability-2019 (icprs.ru)

2018

69、Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced toxicity and hypoxia. Plant Cell and Environment 42: 574-590.

https://doi.org/10.1111/pce.13441

70、Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M, Rintam?ki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct 2: e00093.

https://doi.org/10.1002/pld3.93 

71、Shimakawa G, Miyake C: Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2: e00073.

https://doi.org/10.1002/pld3.73

72、Takagi D, Miyake C:  PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum 164: 337–348.

https://doi.org/10.1111/ppl.12723

73、Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7: e38194.

https://doi.org/10.7554/eLife.38194

74、Lima-Melo, Y., et al. (2018). "Consequences of photosystem I damage and repair on photosynthesis and carbon utilisation in Arabidopsis thaliana." The Plant Journal.

https://doi.org/10.1111/tpj.14177

75、Nikkanen, L. (2018). "Dynamic regulation of photosynthesis by chloroplast thioredoxin systems." 研究報(bào)告.

Lauri Nikkanen: DYNAMIC REGULATION OF PHOTOSYNTHESIS BY CHLOROPLAST THIOREDOXIN SYSTEMS (utupub.fi)

76、Nikkanen, L., et al. (2018). "Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase." Physiologia plantarum 0(ja).

https://doi.org/10.1111/ppl.12914

2017

77、Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.

https://doi.org/10.1007/s11120-017-0394-7

78、Hanke, G. (2017). Preface: ferredoxin. Photosynthesis Research. Photosynthesis Research, Springer.

https://doi.org/10.1007/s11120-017-0456-x

79、WALZ (2017). "Announcing a new generation of deconvoluting PAM devices: The Dual/KLAS spectrophotometer " WALZ.

DUAL-KLAS-NIR Fluorescense Measuring System | WALZ

2016

80、Klughammer C, Schreiber U: Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynthesis Research 128: 195–214.

https://doi.org/10.1007/s11120-016-0219-0

81、Schreiber U, Klughammer C: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant and Cell Physiology 57: 1454–1467

https://doi.org/10.1093/pcp/pcw044



收 藏