植物乙烯氣體監(jiān)測系統(tǒng)——ETD
日期:2017-03-17 14:42:48

主要功能

本系統(tǒng)是全球檢出限和靈敏度很高的乙烯監(jiān)測系統(tǒng),主要用于植物研究相關的乙烯氣體監(jiān)測,如種子發(fā)芽、植物生長發(fā)育、開花生理、植物器官衰老、基因表達、植物病原體相互作用、植物激素間相互作用、蔬果收貨后保藏、植物抗逆性研究(干旱、高溫、重金屬)等。

其中乙烯氣體檢測儀 ETD-300 采用先進的激光技術(光聲學原理),即樣品乙烯在光聲腔吸收激光后釋放熱使光聲腔內部產生壓力,隨激光頻率增減形成能被微型麥克風檢測到的壓力差,而乙烯濃度越高壓力差越大,從而據(jù)聲波強度差可實時快速測量乙烯氣體(C2H4)絕對濃度;閥門控制箱 VC-6 完全自動化和電腦控制,接一個即可以使單個氣體檢測儀實現(xiàn)6個樣品的自動切換測量,單個乙烯氣體檢測儀可以接一個或多個閥門控制箱;烴分解器 CAT-1 則利用鉑金顆粒催化烴氧化分解為水蒸氣和 CO2,為系統(tǒng)提供無烴干擾的樣品空氣。


測量參數(shù)

測量參數(shù):乙烯濃度(ppbv)、氣體流速(l/h)、背景值、模擬輸入(V)

計算參數(shù):乙烯產量(nl/h


連續(xù)流動測定(左)和積累測定(右)的乙烯監(jiān)測數(shù)據(jù)圖


應用領域

用于環(huán)境、醫(yī)學、農業(yè)、工業(yè)、生態(tài)、生物等監(jiān)測領域。特別適合植物生理、發(fā)育研究的超靈敏乙烯測量。



主要技術參數(shù)

參數(shù)

乙烯氣體檢測儀 ETD-300

閥門控制箱 VC-6

烴分解器 CAT-1


測量范圍

0-2 ppm / 0-100 ppm(可調)

/

/


檢出限

0.3 ppbv

/

/


噪音(2σ) 

0.3 ppbv

/

/


精度

<1% 或 0.3 ppbv

0.2% FS

/


穩(wěn)定性

<1% 超過 24 小時

/

/


零點漂移

+/-1 ppbv

/

/


測量時間

7-9 s

/

/


響應時間

30 s (當流量為1 l/h時)

300 ms

/


流量

0.25-5 l/h

0.25-5 l/h

0-30 l/h


校準

使用標準混合氣,每年一次

/

/


通道數(shù)量

/

6(可增至 12, 18 等)

/


測量模式

/

連續(xù)測量,積累測量

/


氣體供應壓力

/

0.5-5 Bar

/


過壓閥

/

在 5 Bar 時打開

/


濾膜類型

/

去除粒徑 >7μm 的微粒

/


最大稀釋濃度

/

/

100 ppm


輸出濃度

/

/

< 100 pptv


壓力

/

/

0-6 atm


活性催化劑

/

/

Pt/SiO2


催化溫度

/

/

150–250 ℃


預熱時間

30 min

/

< 10 min


尺寸

42x45x14 cm (48.3cm 3U 機架)

30x45x10 cm (48.3cm 2U機架)

33x24x14 cm (48.3 cm 3U 半機架)


工作溫度/濕度

10-28 ℃ / 0-95 % RH

5-40 ℃ / 0-95 % RH

5-40 ℃ / 0-95 % RH


電源要求

90-264 VAC,47-63 Hz

90-264 VAC,47-63 Hz

90-264 VAC,47-63 Hz


功耗

<150 W

<20 W

85 W


進氣接口

接外徑 1/8'' 軟管的快速接頭

接外徑 1/8'' 軟管的快速接頭

接外徑 1/8'' 軟管的快速接頭


模擬輸入

0-5 V

/

/


數(shù)據(jù)輸出

USB,CSV 格式

USB,CSV 格式

/


顯示

觸摸屏

LED 指示燈

/



選購指南:

6通道監(jiān)測系統(tǒng)組成如下:


                         

                                  乙烯氣體檢測儀ETD-300                  +                        閥門控制箱VC-6                            +          烴分解器CAT-1

注:系統(tǒng)中 3 個儀器都可以單獨使用

可酌情選擇單通道系統(tǒng):乙烯氣體檢測儀 ETD-300+ 烴分解器 CAT-1。


產地:荷蘭Sensor Sense    產地 SensorSense_log.jpg



應用舉例

1.1 乙烯測定在高溫脅迫研究中的應用舉例

實驗內容簡介:以生長 3 周的擬南芥野生型 Col-0,突變體 NahG 和 opr3 植株為材料,研究了其高溫脅迫下的乙烯釋放。其中,野生型 Col-0 高溫脅迫(38℃)下,電導率(電解質滲透率)、水楊酸和茉莉酸含量和乙烯釋放增加;突變體 NahG 和 opr3 高溫脅迫(38℃)下電導率、茉莉酸和乙烯釋放也增加,但都低于野生型 Col-0,而高溫脅迫后恢復階段(水中 22℃)電導率明顯高于 Col-0。研究結果表明:高溫脅迫下,乙烯迅速產生,其生產受到茉莉酸和水楊酸的調控??偟膩碚f,茉莉酸與水楊酸協(xié)同調節(jié)植物對高溫脅迫的耐受,而乙烯主要加快細胞死亡;突變體 NahG 和 opr3 比野生型 Col-0 的耐熱性差,細胞死亡多。

圖1 高溫處理下擬南芥植株的水楊酸(a)、電導率(b、c)和乙烯釋放(d、e)

WT:擬南芥野生型;突變株opr3 ;突變株NahG以及培養(yǎng)基agar

Clarke, S.M., et al., Jasmonates act with salicyli c acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytologist, 2009. 182(1): p. 175-187.


1.2 乙烯測定在營養(yǎng)缺乏(Mg)脅迫研究中的應用舉例

實驗內容簡介:以生長5周的水培擬南芥 Col-0 植株為材料,研究了其缺鎂脅迫下的乙烯釋放。缺鎂處理后乙烯生物合成酶基因(例如 At5g43450、At1g06620 和At2g25450)的表達水平明顯上升,樣品乙烯釋放是對照組的兩倍多,葉片中抗壞血酸 ASC 和谷胱甘肽 GSH 的氧化態(tài)比例增加。研究結果表明:植物應答缺鎂脅迫存在一些獨特的信號通路,且與植物激素有關,而乙烯在應答缺鎂過程中發(fā)揮了關鍵作用;缺鎂還同步增強了植物抗氧化酶活性。

表 1  鎂元素缺乏處理第 8 天擬南芥新成熟葉片和根系的生理參數(shù)

應用舉例-3.png

DHA:ASC,氧化態(tài)脫氫抗壞血酸:抗壞血酸;GSSG : GSH,氧化型谷胱甘肽:谷胱甘肽;Ctrl,鎂元素充足的植株;-Mg,鎂元素缺乏的植株

Hermans, C., et al., Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytologist, 2010. 187(1): p. 132-144.


1.3 乙烯測定在病菌感染研究中的應用舉例

實驗內容簡介:以品種為 Money Maker 和 Daniela 的成熟番茄果實為材料,研究了其感染番茄灰霉病菌株 VTF1 的乙烯釋放。灰霉病菌可以在體外產生乙烯,其乙烯釋放與其說與分生孢子萌發(fā)相關,不如說與菌絲生長更相關,且分生孢子濃度越大真菌的乙烯釋放越多。感染灰霉病的兩種番茄的乙烯釋放規(guī)律與灰霉病菌類似;但釋放量是其 100 倍。結合受感染番茄的細胞學參數(shù),研究結果表明:番茄-真菌系統(tǒng)的乙烯釋放不是由番茄灰霉病菌引起的,雖說與其內部的真菌生長速率十分同步。

應用舉例-4.png

圖 2 真菌(160 μl 懸浮液)的乙烯產量

● 1.5*108 灰霉病菌分生孢子 ml-1  ▲ 2*107 灰霉病菌分生孢子 ml-1  ■ 2*105 灰霉病菌分生孢子 ml-1


應用舉例-5.png

圖3  模擬感染和不同濃度番茄灰霉病菌感染的兩種番茄的乙烯釋放

A.番茄品種 Money Maker;B.番茄品種 Daniela;

○ 模擬番茄灰霉病菌感染  ● 1.5*108 灰霉病菌分生孢子 ml-1  ▲ 2*107 灰霉病菌分生孢子 ml-1  ■ 2*105 灰霉病菌分生孢子 ml-1

Cristescu, S.M., et al., Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes. Applied and Environmental Microbiology, 2002. 68 (11): p. 5342-5350.


參考文獻

原始數(shù)據(jù)來源:Google Scholar

M. Anastasiadi, et al. (2016). "Tissue biochemical diversity of 20 gooseberry cultivars and the effect of ethylene supplementation on postharvest life." Postharvest Biology and Technology 117: 141-151.

M. M. A. Bisson, et al. (2016). "Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening." Scientific Reports 6: 30634.

I. Bulens, et al. (2014). "Dynamic changes of the ethylene biosynthesis in ‘Jonagold’ apple." Physiologia Plantarum 150(2): 161-173.

N. Busatto, et al. (2016). "Candidate gene expression profiling reveals a time specific activation among different harvesting dates in ‘Golden Delicious’ and ‘Fuji’ apple cultivars." Euphytica 208(2): 401-413.

R. Centeno, et al. (2014). "Three mirror off axis integrated cavity output spectroscopy for the detection of ethylene using a quantum cascade laser." Sensors and Actuators B: Chemical 203: 311-319.

J. Chmielewska-Bak, et al. (2014). "Effect of cobalt chloride on soybean seedlings subjected to cadmium stress." Acta Societatis Botanicorum Poloniae 83(3).

S. M. Cristescu, et al. (2015). Research Tools: Ethylene Detection.C.-K. Wen. Dordrecht, Springer Netherlands: 263-286.

T. Dawood, et al. (2016). "A Co-Opted Hormonal Cascade Activates Dormant Adventitious Root Primordia upon Flooding in Solanum dulcamara." Plant Physiology.

H. De Gernier, et al. (2016). "A Comparative Study of Ethylene Emanation upon Nitrogen Deficiency in Natural Accessions of Arabidopsis thaliana." Frontiers in Plant Science 7: 70.

E. Gharbi, et al. (2016). "Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress." Physiologia plantarum 158(2): 152-167.

S. W. Hoogstrate, et al. (2014). "Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening." Frontiers in Plant Science 5: 466.

A. Jabbar and A. R. East (2016). "Quantifying the ethylene induced softening and low temperature breakdown of ‘Hayward’ kiwifruit in storage." Postharvest Biology and Technology 113: 87-94.

M. Keshavarzi, et al. (2014). "Ethephon and secondary shoot induction in Gentian (Gentiana spp.) hybrids in vitro." Scientia Horticulturae 179: 170-173.

Martin Sch?fer, et al. (2015). "Cytokinin concentrations and CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2)- and NaCHK3-mediated perception modulate herbivory-induced defense signaling and defenses in Nicotiana attenuata." The New phytologist 207(3): 645-658.

N. A. Mohd-Radzman, et al. (2016). "Different pathways act downstream of the peptide receptor CRA2 to regulate lateral root and nodule development." Plant Physiology.

D. Nguyen, et al. (2016). "Drought and flooding have distinct effects on herbivore-induced responses and resistance in Solanum dulcamara." Plant, Cell & Environment 39(7): 1485-1499.

K. Razzaq, et al. (2015). "Role of 1-MCP in regulating 'Kensington Pride' mango fruit softening and ripening." Plant Growth Regulation: 1-11.

S. Rupavatharam, et al. (2015). "Re-evaluation of harvest timing in ‘Unique’ feijoa using 1-MCP and exogenous ethylene treatments." Postharvest Biology and Technology 99: 152-159.

S. Rupavatharam, et al. (2016). "Effects of preharvest application of aminoethoxyvinylglycine (AVG) on harvest maturity and storage life of ‘Unique’ feijoa." New Zealand Journal of Crop and Horticultural Science 44(2): 121-135.

R. Santhanam, et al. (2014). "Analysis of Plant-Bacteria Interactions in Their Native Habitat: Bacterial Communities Associated with Wild Tobacco Are Independent of Endogenous Jasmonic Acid Levels and Developmental Stages." PLoS ONE 9(4): e94710.

K. Schellingen, et al. (2014). "Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression." BMC Plant Biology 14(1): 1-14.

A. Sivakumaran, et al. (2016). "ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H(2)O(2) Generation and Increase Host Susceptibility." Frontiers in Plant Science 7: 709.

R. Valluru, et al. (2016). "Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat." Frontiers in Plant Science 7: 461.

B. Van de Poel, et al. (2016). "Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses." Plant Physiology 172(1): 533-545.

D. Vromman, et al. (2016). "Salinity influences arsenic resistance in the xerohalophyte Atriplex atacamensis Phil." Environmental and Experimental Botany 126: 32-43.

R. L. Wilson, et al. (2014). "Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana." Frontiers in Plant Science 5: Article 433(431-413).

R. L. Wilson, et al. (2014). "The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress." Plant Physiology 165(1532-2548 (Electronic)): 1353–1366.

A. Xu, et al. (2014). "ENHANCING CTR1-10 ETHYLENE RESPONSE2 is a novel allele involved in CONSTITUTIVE TRIPLE-RESPONSE1-mediated ethylene receptor signaling in Arabidopsis." BMC Plant Biology 14: 48-48.

Z. S. Zahoor Hussain (2015). "Involvement of ethylene in causation of creasing in sweet orange [Citrus sinensis (L.) Osbeck] fruit." Australian Journal of Crop Science 9(1): 1-8.

 


收 藏